a2 United States Patent

Bathula et al.

US009418219B2

US 9,418,219 B2
Aug. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54) INTER-PROCESS MESSAGE SECURITY

(735)

(73)

")

@

(22)

(65)

(1)

(52)

Inventors: Avinashreddy Bathula, Kirkland, WA
(US); Jimmy Alexander, Bellevue, WA
(US); Keith C. Bentley, Redmond, WA
(US); Neil L. Coles, Redmond, WA
(US); Brian Hudson, Kirkland, WA
(US); Matthew G. Lyons, Duvall, WA
(US); John Mark Miller, Kirkland, WA
(US); Andrew M. Rogers, Bellevue, WA
(US); Upender R. Sandadi, [ssaquah,
WA (US); Scott R. Shell, Kirkland, WA
(US); Jon Vincent, Seattle, WA (US)

Assignee:

Notice:

Appl. No.:

Filed:

US 2009/0260052 A1

Int. Cl1.

GO6F 17/00
GO6F 21/53
GO6F 21/55
GO6F 9/46

GO6F 21/54
GO6F 21/52

U.S. CL
CPC

Microsoft Technology Licensing, LLC,

Redmond, WA (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 2034 days.
12/101,243
Apr. 11, 2008

Prior Publication Data

Oct. 15, 2009

(2006.01)
(2013.01)
(2013.01)
(2006.01)
(2013.01)
(2013.01)

GO6F 21/53 (2013.01); GO6F 21/556

(2013.01); GO6F 9/468 (2013.01); GO6F 21/52
(2013.01); GO6F 21/54 (2013.01)

1

n5
512

5%

516

Retern Value

522

IsWindors
Window==

K‘.‘o‘“\’

e s

IsCrossChamberinteraction

528

[Cross-Chamber
Interaction == Truc]

Fs Tnternction Allowed

215\’\ 130
- Poli
WiaMgr lmmlag:r cy

(58) Field of Classification Search

CPC ... GOG6F 21/52; GOGF 9/468; GOGF 21/54
USPC ittt seneneaes 726/1

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
7,200,865 Bl 4/2007 Roscoeetal. 726/12
2003/0115487 Al* 6/2003 Andrews etal. 713/201
2003/0172109 Al* 9/2003 Dalton etal. 709/203
2004/0143751 Al 7/2004 Peikari 713/200
2004/0250107 Al 12/2004 Guo 713/200
2005/0005165 Al 1/2005 Morgan etal. 713/201
(Continued)
OTHER PUBLICATIONS

“Running Vista Every Day!”, Feb. 4, 2007, invisiblethings, htip://
theinvisiblethings.blogspot.com/2007/02/running-vista-every-day.
html, 13 pgs.

(Continued)

Primary Examiner — Krista Zele
Assistant Examiner — James Forman
(74) Attorney, Agent, or Firm — Judy Yee; Micky Minhas

(57) ABSTRACT

An inter-process messaging security management may be
provided. A message comprising an operation to be per-
formed may be sent from a process operating in a process
chamber to a second process operating in another chamber.
Before the message is allowed to be delivered, the validity of
the operation contained in the message may be verified and a
security policy may be examined to determine whether the
message is permitted to be sent from the first process to the
second process. If the security policy permits the second
process to execute the operation requested by the first pro-
cess, the message may be delivered to the second process. If
the operation is not permitted, the message may not be deliv-
ered and an error message may be returned to the first process.

20 Claims, 7 Drawing Sheets

40

Global Security
Policy Manager

.

530

No

Yes/No

fetse) 5%

:
:
£
g
£

[Else] 532
HateractionAtiowsdS
= Truel

!
InteractionAlion
== Yes |

Perform
SendMessage\S\
536

US 9,418,219 B2
Page 2

(56)

2005/0071855
2005/0120242
2005/0149726
2005/0193391
2006/0075383
2006/0075478
2006/0248585
2006/0277311
2007/0101148
2007/0118901
2008/0022405
2008/0313417

References Cited

U.S. PATENT DOCUMENTS

Al 3/2005 Mathuretal. ...

Al* 6/2005 Mayeretal. .
Al* 7/2005 Joshietal. ...
Al 9/2005 Demsey etal. .
Al* 4/2006 Moorthy et al.
Al 4/2006 Hyndman et al.
Al* 11/2006 Ward etal.
Al* 12/2006 Franco etal. ...
Al 5/2007 Schutz et al.
Al* 5/2007 Fockeetal. ..
Al* 1/2008 Wangetal. ..
Al* 12/2008 Kim et al.

....... 719/328
. 713/201 user-interface-privilege-isolation-uipi-on-vista.aspx, 2 pgs.

;}gg?‘}‘ “Windows Integrity Mechanism Design,”, 2008, http://msdn2.

.. 709/229

OTHER PUBLICATIONS

“Vishal’s Windows Application Compatibility Awareness,” Nov. 30,
2006, http://blogs.msdn.com/vishalsi/archive/2006/11/30/what-is-

717/106 microsoft.com/en-us/library/bb625963(printer).aspx, 16 pgs.

. T726/11 “User Interface Privilege Isolation,” Dec. 25, 2007, http://en.

.. 726/20 wikipedia.org/wiki/User_ Interface Privilege_ Isolation, 1 pg.
713/1%2 Spencer Shimko et al., “Securing Inter-Process Communication in

622 Selinux,” Tresys Technology, Mar. 12, 2007, 10 pgs.

.. 726/23))

. 711/163 * cited by examiner

U.S. Patent Aug. 16, 2016 Sheet 1 of 7 US 9,418,219 B2
100

110\/\ 120 150
. 4 A4 ,

First Process Second Process Third Process
Chamber Chamber Chaniber

Processe Processes Processes
115|116 |117 125|126 | 127 155|156 | 157
. S _ J _ J

130

Internal Policy Manager

140

\4\{

Global Security Policy Manager

FIG.1

U.S. Patent Aug. 16, 2016 Sheet 2 of 7 US 9,418,219 B2

210

22\0/\ 230
205 SendMessageQ SetProp Q Q keybd_event
Core Message Routing Module
0 Q 0
________________________ L User
Semﬂ\dessag.e SetProp API keyl;'{even? API Kernel

API entry-point entry-point _m

215 240

250

Internal Policy Manager

Global Security Policy Manager

FIG. 2

U.S. Patent Aug. 16, 2016 Sheet 3 of 7

305

Receive Message
1
310~ From a Sending

Process

Possible to
Deliver Message?

Yes
X

No 320 ~] |Determine Number of
Associated Process

Chambers

Intra-Chamber
Policy Permit
Delivery?

330

Cross-Chamber
Policy Cover
Message?

Yes

335

Cross-Chamber
Policy Permit
Delivery?
Yes

Yes
]

30~

» Deliver Message

US 9,418,219 B2

U.S. Patent Aug. 16, 2016 Sheet 4 of 7 US 9,418,219 B2

335~ Reguest
Authorization

Y
360 ~ o~ Discard
Message

i

365 Returit an Error

e to the Sending
Process

350 y
i End)

FIG. 3B

U.S. Patent Aug. 16, 2016 Sheet 5 of 7 US 9,418,219 B2

410

\,\G’rom Decision Block 315)

L 4

420
\/\ Process Attaches a Chamber Identity
Token to a Call Stack

|98
N
<

430 4

API Routes Message to Message
Subsystem

) 4

440
\”-\ Message Subsystens Counts Number
of ldentity Tokens

Assoctated with Call Stack

L 4

Verify That All Chambers Identified
by the Tokens are Perinitted to
Interact

4

Deliver Message

350 !

Returi to Decision
Block 325

FIG. 4

U.S. Patent Aug. 16, 2016 Sheet 6 of 7 US 9,418,219 B2

115 215 225 130 140
First . Internal Policy | | Global Security
Process 512 MsgQue WinMgr Manager Policy Manager
: } I 1]
N ' 522 !] !
I SendMessage | \,.} I : :
, | 1 {
514 : IsWindow) H N
- [Window == : :
False] { 1
Error Valee _| ! :
- ! {
[Else) 2% 526 : i \
\,\ . ; !
> lsCrossChamberIn:temctiou : :
: { {
528 I | :
|
I | |
I | |
[Cross-Chamber | : :
L Interaction == Truel : : :
! | (
[
s Interaction Allowed | ' g 546 :
T
\r\ : _J_ l,Vi tels i
\ nterun
530 1 Policies :
: 542 == Truel {
(
No i 5 {
DR FToTTTTTT N 1eisel ¢ 3% !
| 1
: IsInteractionAllowed
|
I 544 Yes/No jﬂ"
Yes/No ! 5 -
e LZomm e = AV N
IE’SO.’] 5321 N 550 N
HuteractiouAllmveé/ : :
= Trieel 534 | |
LS : :
InteractionAllow | |
516 == Yes | : :
Perform : :
__‘_R_eff"_"_v_‘fl‘_“?_ __J:[' SeudMessnge\f\sas : :
| t

| FIG. 5

U.S. Patent Aug. 16, 2016 Sheet 7 of 7 US 9,418,219 B2
608 (600 Computing Device

[mosTmmmooooooes R)
1 |

|
i System Memory \ |
! ROM/RAM 604 :
! n
: Operating System ~\ !
: 605 Removable _J{\
: Storage 1609
: Progranuning 602 :
H Modules / |
) Non-Removable 1
| Storage N\
1 s . 1610
X o Processing Unit |
I \ !
: 606 Input Device(s) |
! Global nput Device(s ’jl\
: Security T :612
: Policy N |

i
| Manager 140 Output Device(s) N
: 1614
‘ {
1
| Commuuication :
' Comnection(s) M
] :616
; :
! “\ !
! Program Data !
| 607 !
:)
| e e e e e e

618
I
Other Computing
Devices

US 9,418,219 B2

1
INTER-PROCESS MESSAGE SECURITY

BACKGROUND

Software applications can be subject to computer security
breaches using improper or unauthorized control messages
from another application. For example, shatter attacks occur
when a lower privileged application sends a control message
to a higher privileged application. The control message
causes the higher privileged application to perform an unsafe
task that the lower privileged application could not have per-
formed on its own. Such unsafe tasks include hiding applica-
tion interfaces, enabling or disabling functionality within an
application, or accessing data corresponding to unrelated
applications. This can be caused by the higher privileged
application failing to perform sufficient validation on argu-
ments passed in the control message.

SUMMARY

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter. Nor is this Summary intended to be used to limit
the claimed subject matter’s scope.

Inter-process message security may be provided. A mes-
sage may be received from a first process associated with a
first process chamber. A destination process and associated
second process chamber may be determined for the message.
A security policy may then be determined to permit interac-
tion between the first and second process chambers. In
response to determining that a security policy may permit
interaction between the first and second process chambers,
the message may be sent to the destination process.

Both the foregoing general description and the following
detailed description provide examples and are explanatory
only. Accordingly, the foregoing general description and the
following detailed description should not be considered to be
restrictive. Further, features or variations may be provided in
addition to those set forth herein. For example, embodiments
may be directed to various feature combinations and sub-
combinations described in the detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this disclosure, illustrate various
embodiments of the present invention. In the drawings:

FIG. 1 is a diagram showing multiple process chambers in
an inter-process message security system;

FIG. 2 is a diagram showing an inter-process message
security system;

FIG. 3A is a flow chart of a method for providing inter-
process message security;

FIG. 3B is a continuation of the flow chart depicted in FIG.
3A.

FIG. 4 is a flow chart of a subroutine used in the flow chart
of FIG. 3A when a message is relayed through an intermedi-
ate process;

FIG. 5 is a state diagram of the method for providing
inter-process message security; and

FIG. 6 is a block diagram of a system including a comput-
ing device.

DETAILED DESCRIPTION

The following detailed description refers to the accompa-
nying drawings. Wherever possible, the same reference num-

10

15

20

25

30

35

40

45

50

55

60

65

2

bers are used in the drawings and the following description to
refer to the same or similar elements. While embodiments of
the invention may be described, modifications, adaptations,
and other implementations are possible. For example, substi-
tutions, additions, or modifications may be made to the ele-
ments illustrated in the drawings, and the methods described
herein may be modified by substituting, reordering, or adding
stages to the disclosed methods. Accordingly, the following
detailed description does not limit the invention. Instead, the
proper scope of the invention is defined by the appended
claims.

Inter-process message security may be provided. Consis-
tent with embodiments of the present invention, a first soft-
ware application may send a message to a second software
application. This message may, for example, comprise a
request to perform an operation. For example, the message
may send information, request data, or provide instructions to
perform a further operation. In order to ensure that the second
software application is protected from being manipulated or
accessed improperly, a security policy may be consulted to
determine if the first software application and the second
software application are allowed to communicate such a mes-
sage.

FIG. 1 is a diagram showing multiple process chambers in
an inter-process message security system 100. System 100
includes a first process chamber 110, a second process cham-
ber 120, a third process chamber 150, an internal policy
manager 130, and a global security policy manager 140. First
process chamber 110 may include a plurality of processes
115, 116, and 117, second process chamber 120 may include
a plurality of processes 125, 126, and 127, and third process
chamber 150 may include a plurality of processes 155, 156,
and 157. Each process 115,116,117,125,126,127,155, 156,
and 157 may have multiple properties.

FIG. 2 is a diagram showing inter-process message secu-
rity system 100 in more detail. System 100 may include
multiple application programming interfaces (APIs) to pro-
cesses. For example, system 100 may include a SendMessage
API 210, a SetProp API 220, and a keybd_event API 230.
System 100 may further include a core message routing mod-
ule 205 and an operating system kernel 240. Operating sys-
tem kernel 240 may include a message subsystem 250 and
global security policy manager 140. Message subsystem 250
may include function servers such as a message queue server
215, a window manager server 225, and a user input manager
235. Message subsystem 250 may further include internal
policy manager 130.

FIGS. 3A and 3B are flow charts setting forth the general
stages involved in a method 300 consistent with embodiments
of'the invention for providing inter-process message security.
Method 300 may be implemented using a computing device
600 as described in more detail below with respect to FIG. 6.
Computing device 600 may provide an operating environ-
ment for system 100. Ways to implement the stages of method
300 will be described in greater detail below.

FIG. 5 shows a state diagram to further illustrate method
300. Consistent with embodiments of the invention, first pro-
cess 115 may send a message via an API. (State 512.) Core
message routing module 205 may route the message to mes-
sage queuing subsystem 215 that may communicate with a
window manager subsystem 225. Consistent with embodi-
ments of the invention, the received message may comprise
an operation request requiring interaction with another pro-
cess in process chamber 110 such as process 116. Such opera-
tion requests may comprise a request to deliver a message, to
set or retrieve data, or to create or service a user input request.

US 9,418,219 B2

3

Method 300 may begin at starting block 305 and proceed to
stage 310 where computing device 600 may receive a mes-
sage from first process 115 associated with first process
chamber 110. For example, first process 115 may comprise a
user process such as a software application that requests
interaction with a second process via an API such as Send-
Message API 210, SetProp 220, or keybd_event 230. Inter-
action requests may be formatted as a message that may be
passed to core message routing module 205 by a call to one of
the APIs (e.g. SendMessage API 210, SetProp 220, or keyb-
d_event 230).

Consistent with embodiments of the invention, first pro-
cess 115 may attempt to send a message to second process
116 that may also operate in first process chamber 110. For
example, first process 115 may comprise a banking software
application that may be permitted to send a message to second
process 116 that may comprise a checking account history
software application also operating in first process chamber
110 in order to query an account balance.

First process 115 in first process chamber 110 may attempt
to send a message to second process 125 in second process
chamber 120. Internal policy manager 130 may route the
message to global security policy manager 140 to determine
whether at least one security policy permits interaction
between first process chamber 110 and second process cham-
ber 120. For example, first process chamber 110 and second
process chamber 120 may represent a logical division
between first process 115 and second process 125. The logical
division between first process 115 and second process 125
may further represent a security boundary.

Core message routing module 205 may route an API call to
message subsystem 250. Message subsystem 250 may
include function servers for implementing the functionality
provided by the APIs. For example, SendMessage API 210
may provide a software application with functionality to send
a message to a second software application, SetProp AP1220
may be provided to set a data value in the second software
application, and keybd_event API 230 may be provided to
send a keystroke. Other APIs may be provided, for example,
to send other user input information such as mouse move-
ments or selections. Core message routing module 205 may
route calls to SendMessage API 210 to message queue server
215. Calls to SetProp API 220 may be routed to window
manager server 225, and calls to keybd_event API 230 may be
routed to user input manager 235.

Each function server may communicate with each other
function server in order to complete a requested interaction.
For example, a call to SendMessage API 210 may be routed to
message queue server 215 that may in turn call user input
management server 235 to process input that may be associ-
ated with the original call to SendMessage API 210.

From stage 310, method 300 may advance to stage 315,
where computing device 600 may determine if'it is possible to
deliver the message. For example, second process 125 may
not be a valid window, as determined by a call to window
manager 225 of messaging subsystem 250. (State 522.) Con-
sistent with embodiments of the invention, windows may be
Ul resources belonging to processes to whom messages can
be sent. Every window may be associated with a unique
window handle. For example, process 115 of process cham-
ber 110 may try and send a window message to a window
handle associated with a window belonging to process 125 of
process chamber 120. In stage 315, method 300 may check
with window-manager 225 if the window handle provided is
avalid one or not. A message may also be of a type that is not
logically able to be delivered to second process 125, such as
awindow creation request message or an initialize dialog box

20

25

30

40

45

4

message. If the message is not able to be delivered, method
300 may advance to stage 360 where computing device 600
may discard the message. (State 524.) Consistent with
embodiments of the invention, method 300 may then advance
to stage 365 where computing device 600 may return an error
to first process 115. (State 514.) Method 300 may then end at
stage 350.

If the message is determined to be of a type that can logi-
cally be performed, method 300 may advance from stage 315
to subroutine 320 where computing device 600 may deter-
mine the number of process chambers associated with a mes-
sage. Subroutine 320 is discussed below in greater detail with
respect to FIG. 4.

Method 300 may then advance to stage 325 where com-
puting device 600 may determine whether second process
125 is associated with second process chamber 120. (State
526.) For example, first process 115 may be associated with
first process chamber 110 and second process 125 may be
associated with second process chamber 120. Consistent with
embodiments of the invention, processes may comprise at
least one of a game application, a financial application, an
electronic document processing application, a productivity
application, an internet access application, a personal infor-
mation management application, an interface management
process, a user management process, a server process, and an
operating system process. The aforementioned are merely
examples, and other processes may be used.

If computing device 600 determines that second process
125 is associated with second process chamber 120, method
300 may advance to stage 330, where computing device 600
may determine whether any cross-chamber security policies
are violated by the interaction request. (State 530.) Internal
policy manager 130 may maintain a plurality of internal secu-
rity policies with respect to process interaction permissions.
For example, internal policy manager 130 may maintain an
internal security policy permitting any message sent from first
process 115 to itself to bypass further security checks.
Another internal security policy may, for example, permit
certain functionality when the interaction request requires a
message to be sent between first process 115 and second
process 116 both operating within first process chamber 110.
Yet another internal security policy may, for example, deny
delivery of the message when the requested interaction is
logically impossible or first process 115 calling the APIlacks
privileges permitting the calling process to accomplish the
requested functionality.

If no internal messaging policies are violated by the
request, computing device 600 may query global security
policy manager 140 to determine whether at least one security
policy is associated with interactions between first process
chamber 110 and second process chamber 120. (State 548.)
For example, global security policy manager 140 may deter-
mine whether any security policy has been provided for send-
ing a message of'a particular type between first process cham-
ber 110 and second process chamber 120.

Security policies may be maintained by global security
policy manager 140 and may determine whether a security
policy is provided for the given message based on data asso-
ciated with the message. Global security policy manager 140
may maintain a plurality of security policies with respect to
interactions between processes. For example, a security
policy may permit all interactions between first process
chamber 110 and second process chamber 120 while another
security policy may permit first process chamber 110 limited
or no interaction with third process chamber 150. For another
example, a security policy may permit first process chamber
110 only to send data to second process chamber 120, but not

US 9,418,219 B2

5

to request data from second process chamber 120. The poli-
cies maintained by global security policy manager 140 may,
for example, comprise policies established by operating sys-
tem kernel 240, configured by a system administrator, and/or
configured by a user. Consistent with embodiments of the
invention, an administrator may also be a user. The adminis-
trator may have additional privileges to establish and/or con-
figure interactions than a user.

If computing device 600 determines at least one security
policy is associated with interactions between first process
chamber 110 and second process chamber 120, method 300
may advance to stage 335, where computing device 600 may
determine whether the at least one security policy associated
with interactions between first process chamber 110 and sec-
ond process chamber 120 permits the message to be sent from
first process chamber 110 to second process chamber 120.
(State 550.) The determination whether or not to allow the
message to be delivered may then be returned to message
subsystem 250 for further processing. (State 544.) For
example, global security policy manager 140 may determine
that a valid policy exists to allow first process 115 comprising
a game application in first application chamber 110 to request
data from destination process 125 comprising a banking
application in second process chamber 120.

If computing device 600 determines that the at least one
security policy associated with the first and second process
chambers permits the message to be sent from first process
chamber 110 to second process chamber 120, method 300
may advance to stage 340, where computing device 600 may
deliver the message to second process 125. For example, a
data request from first process 115 comprising a game appli-
cation may be delivered to second process 125 comprising a
banking application.

Global security policy manager 140 may inform internal
policy manager 130 or message subsystem 250 whether or not
the requested interaction is permitted. A function server such
as message queue 215 may then be informed whether or notto
proceed with the requested interaction. If the interaction is
permitted, the function server may return a value to first
process 115 indicating success. If the interaction is not per-
mitted, the function server may return an error to first process
115.

At stage 325, computing device 600 may determine that
first process 115 is attempting to send a message to second
process 116 that may also operate in first process chamber
110. Method 300 may then advance to stage 345, where
computing device 600 may determine whether an intra-cham-
ber security policy is associated with intra-chamber mes-
sages. For example, first process 115 may comprise a banking
application that sends a data request to destination process
116 comprising a related checking account history applica-
tion. Because both applications may operate within the logi-
cal boundaries of first application chamber 110, global secu-
rity policy manager 140 may not need to be called if internal
policy manager 130 already permits such intra-chamber
interactions. (State 532.) Consistent with embodiments of the
invention, internal policy manager 130 may determine if an
intra-process message is allowed under an internal policy list.
For example, internal policy manager 140 may not permit first
process 115 to send messages requesting a particular opera-
tion to any other process, regardless of the process chamber
associated with the destination process. These message types
may include, for example, messages that are logically impos-
sible to be performed by another process.

If, at stage 345, computing device 600 determines that a
policy exists with respect to the intra-chamber message, com-
puting device 600 may determine whether the policy allows

5

10

15

20

25

30

35

40

45

50

55

60

65

6

the intra-chamber message to be delivered. (State 532.) If the
message is permitted, method 300 may advance to stage 340
where computing device 600 may send the message to second
process 116. (State 532, State 534, and State 536.) Consistent
with embodiments of the invention, computing device 600
may return a value indicating successful delivery to first pro-
cess 115. (State 516.)

If, at stage 345, computing device 600 determines that no
policy exists or no policy permits the message to be delivered,
method 300 may advance to stage 360 where computing
device 600 may discard the message. Method 300 may then
advance from stage 360 to stage 365, where computing device
600 may return an error to first process 115. (State 514.)

After the message is either delivered at stage 340 or dis-
carded at stage 360, and whether or not a return value or error
is returned to the first process, method 300 may then end at
stage 350. For example, first process 115 in first process
chamber 110 may comprise a game application and second
process 125 in second process chamber 120 may comprise a
banking application. Game application 115 may attempt to
send a message requesting data from banking application
125. The message may be routed to internal policy manager
130, that may not maintain a policy with respect to interac-
tions between first process chamber 110 containing game
application 115 and second process chamber 120 containing
banking application 125. Global security policy manager 140
may then determine if a policy is in place to control data
requests between first process chamber 110 and second pro-
cess chamber 120. If a policy is in place that permits the
interaction, global security policy manager 140 may allow the
data request to be delivered to second process chamber 120
and routed to banking application 125. A value may be
returned to game application 115. The value returned to game
application 115 may comprise a value indicating that the
message was successfully delivered.

Consistent with embodiments of the invention, maintain-
ing the policies used by the internal policy manager and the
global security policy manager may comprise creation,
updating, modification, enabling, disabling, and removal.
Maintaining the policies may be performed by at least one of
auser, an administrator, a software application or process, and
an operating system.

FIG. 4 is a flow chart of subroutine 320 used in the flow
chart of FIG. 3A when an interaction requested by a message
requires additional messages to be sent to additional pro-
cesses. Subroutine 320 may begin at starting block 410 and
proceed to stage 420 where computing device 600 may ensure
that each process that sends a message associated with the
interaction request associates a chamber identity token with a
call stack. Each process may have a process identity token
unrelated to the chamber identity token. The process identity
token may be used to provide similar functionality to the
chamber identity token. A plurality of processes may share an
identity token that may be common to some or all processes
operating within the same chamber. Each process may com-
prise a unique identity token and operate in a unique process
chamber.

From stage 420, subroutine 320 may advance to stage 430,
where computing device 600 may route the message to mes-
sage subsystem 250. From stage 430, method 400 may
advanceto stage 440, where computing device 600 may cause
message subsystem 250 to count the number of identity
tokens associated with the call stack. For example, a message
may have been sent from first process 115 in first process
chamber 110 to second process 125 in second process cham-
ber 120. To complete the interaction requested by first process
115, second process 125 may send a message to third process

US 9,418,219 B2

7

155 in third process chamber 150. When second process 125
sends the message to third process 155, identity tokens asso-
ciated with both first process chamber 110 and second pro-
cess chamber 120 may be associated with the call stack.

From stage 440, subroutine 320 may advance to stage 450,
where computing device 600 may determine that each cham-
ber or process identified by the identity tokens associated with
the call stack are permitted to send the message to the desti-
nation process. For example, computing device 600 may
determine whether both first process chamber 110 and second
process chamber 120 are permitted to send a message to third
process chamber 150 prior to permitting the message to be
delivered to third process 155. This determination may be
made according to the stages described above with respect to
FIG. 3.

From stage 450, subroutine 320 may advance to stage 340,
where computing device 600 may deliver the message if each
process or chamber identified by the identity tokens associ-
ated with the message is permitted to send the message to the
destination process. Method 400 may then end at stage 350.

For example, first process 115 may call process 155 asso-
ciated with process chamber 150, to request an operation. In
order to accomplish the requested operation, process 155 may
send a message to a window belonging to process 125 asso-
ciated with process chamber 120. Identity tokens associated
with process chamber 110 and process chamber 150 may both
be associated with the call stack prior to sending the message
to the window belonging to process 125. The message may be
delivered if process chamber 110 and process chamber 150
are both permitted to interact with process chamber 120.

Embodiments consistent with the invention may comprise
a system for providing inter-process message security. The
system may comprise a memory storage and a processing unit
coupled to the memory storage. The processing unit may be
operative to receive a message from a process operating on
the system, determine the logical chambers for the sending
and destination process, and determine whether a security
policy permits the sending of the message. The system may be
further operative to deliver or discard the message in accor-
dance with the security policy.

In embodiments consistent with the invention, components
and functionality of system 100 may be provided by dynami-
cally linked libraries (DLLs). For example, a core message
routing module 205, a message subsystem 250, an internal
policy manager 130, and a global security policy manager
140 may be provided by at least one DLL.

FIG. 6 is a block diagram of a system including computing
device 600. Consistent with embodiments of the invention,
the aforementioned memory storage and processing unit may
be implemented in a computing device, such as computing
device 600 of FIG. 6. Any suitable combination of hardware,
software, or firmware may be used to implement the memory
storage and processing unit. For example, the memory stor-
age and processing unit may be implemented with computing
device 600 or any of other computing devices 618, in combi-
nation with computing device 600. The aforementioned sys-
tem, device, and processors are examples and other systems,
devices, and processors may comprise the aforementioned
memory storage and processing unit, consistent with embodi-
ments of the invention. Furthermore, computing device 600
may comprise an operating environment for system 100 as
described above. System 100 may operate in other environ-
ments and is not limited to computing device 600.

With reference to FIG. 6, a system consistent with embodi-
ments of the invention may include a computing device, such
as computing device 600. In a basic configuration, computing
device 600 may include at least one processing unit 602 and

10

15

20

25

30

35

40

45

50

55

60

65

8

a system memory 604. Depending on the configuration and
type of computing device, system memory 604 may com-
prise, but is not limited to, volatile (e.g. random access
memory (RAM)), non-volatile (e.g. read-only memory
(ROM)), flash memory, or any combination. System memory
604 may include operating system 605, one or more program-
ming modules 606, and may include a program data 607.
Operating system 605, for example, may be suitable for con-
trolling computing device 600’s operation. In one embodi-
ment, programming modules 606 may include libraries com-
prising data for providing a global security policy manager
620. Consistent with embodiments of the invention, an oper-
ating system 605 may include an internal policy manager 130
and a global security policy manager 140. Furthermore,
embodiments of the invention may be practiced in conjunc-
tion with a graphics library, other operating systems, or any
other application program and is not limited to any particular
application or system. This basic configuration is illustrated
in FIG. 6 by those components within a dashed line 608.

Computing device 600 may have additional features or
functionality. For example, computing device 600 may also
include additional data storage devices (removable and/or
non-removable) such as, for example, magnetic disks, optical
disks, or tape. Such additional storage is illustrated in FIG. 6
by a removable storage 609 and a non-removable storage 610.
Computer storage media may include volatile and nonvola-
tile, removable and non-removable media implemented in
any method or technology for storage of information, such as
computer readable instructions, data structures, program
modules, or other data. System memory 604, removable stor-
age 609, and non-removable storage 610 are all computer
storage media examples (i.e. memory storage.) Computer
storage media may include, but is not limited to, RAM, ROM,
electrically erasable read-only memory (EEPROM), flash
memory or other memory technology, CD-ROM, digital ver-
satile disks (DVD) or other optical storage, magnetic cas-
settes, magnetic tape, magnetic disk storage or other mag-
netic storage devices, or any other medium which can be used
to store information and which can be accessed by computing
device 600. Any such computer storage media may be part of
device 600. Computing device 600 may also have input
device(s) 612 such as a keyboard, a mouse, a pen, a sound
input device, a touch input device, etc. Output device(s) 614
such as a display, speakers, a printer, etc. may also be
included. The aforementioned devices are examples and oth-
ers may be used.

Computing device 600 may also contain a communication
connection 616 that may allow device 600 to communicate
with other computing devices 618, such as over a network in
a distributed computing environment, for example, an intra-
net or the Internet. Communication connection 616 is one
example of communication media. Communication media
may typically be embodied by computer readable instruc-
tions, data structures, program modules, or other data in a
modulated data signal, such as a carrier wave or other trans-
port mechanism, and includes any information delivery
media. The term “modulated data signal” may describe a
signal that has one or more characteristics set or changed in
such a manner as to encode information in the signal. By way
of example, and not limitation, communication media may
include wired media such as a wired network or direct-wired
connection, and wireless media such as acoustic, radio fre-
quency (RF), infrared, and other wireless media. The term
computer readable media as used herein may include both
storage media and communication media.

As stated above, a number of program modules and data
files may be stored in system memory 604, including operat-

US 9,418,219 B2

9

ing system 605. While executing on processing unit 602,
programming modules 606 (e.g. global security policy man-
ager 140) may perform processes including, for example, one
or more of method 300°s stages. The aforementioned process
is an example, and processing unit 602 may perform other
processes. Other programming modules that may be used in
accordance with embodiments of the present invention may
include electronic mail and contacts applications, word pro-
cessing applications, spreadsheet applications, database
applications, slide presentation applications, drawing or com-
puter-aided application programs, etc.

Generally, consistent with embodiments of the invention,
program modules may include routines, programs, compo-
nents, data structures, and other types of structures that may
perform particular tasks or that may implement particular
abstract data types. Moreover, embodiments of the invention
may be practiced with other computer system configurations,
including hand-held devices, multiprocessor systems, micro-
processor-based or programmable consumer electronics,
minicomputers, mainframe computers, and the like. Embodi-
ments of the invention may also be practiced in distributed
computing environments where tasks are performed by
remote processing devices that are linked through a commu-
nications network. In a distributed computing environment,
program modules may be located in both local and remote
memory storage devices.

Furthermore, embodiments of the invention may be prac-
ticed in an electrical circuit comprising discrete electronic
elements, packaged or integrated electronic chips containing
logic gates, a circuit utilizing a microprocessor, or on a single
chip containing electronic elements or microprocessors.
Embodiments of the invention may also be practiced using
other technologies capable of performing logical operations
such as, for example, AND, OR, and NOT, including but not
limited to mechanical, optical, fluidic, and quantum technolo-
gies. In addition, embodiments of the invention may be prac-
ticed within a general purpose computer or in any other cir-
cuits or systems.

Embodiments of the invention, for example, may be imple-
mented as a computer process (method), a computing system,
or as an article of manufacture, such as a computer program
product or computer readable media. The computer program
product may be a computer storage media readable by a
computer system and encoding a computer program of
instructions for executing a computer process. The computer
program product may also be a propagated signal on a carrier
readable by a computing system and encoding a computer
program of instructions for executing a computer process.
Accordingly, the present invention may be embodied in hard-
ware and/or in software (including firmware, resident soft-
ware, micro-code, etc.). In other words, embodiments of the
present invention may take the form of a computer program
product on a computer-usable or computer-readable storage
medium having computer-usable or computer-readable pro-
gram code embodied in the medium for use by or in connec-
tion with an instruction execution system. A computer-usable
or computer-readable medium may be any medium that can
contain, store, communicate, propagate, or transport the pro-
gram for use by or in connection with the instruction execu-
tion system, apparatus, or device.

The computer-usable or computer-readable medium may
be, for example but not limited to, an electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor system,
apparatus, device, or propagation medium. More specific
computer-readable medium examples (a non-exhaustive list),
the computer-readable medium may include the following: an
electrical connection having one or more wires, a portable

10

15

20

25

30

35

40

45

50

55

60

65

10

computer diskette, a random access memory (RAM), a read-
only memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, and a
portable compact disc read-only memory (CD-ROM). Note
that the computer-usable or computer-readable medium
could even be paper or another suitable medium upon which
the program is printed, as the program can be electronically
captured, via, for instance, optical scanning of the paper or
other medium, then compiled, interpreted, or otherwise pro-
cessed in a suitable manner, if necessary, and then stored in a
computer memory.

Embodiments of the present invention, for example, are
described above with reference to block diagrams and/or
operational illustrations of methods, systems, and computer
program products according to embodiments of the inven-
tion. The functions/acts noted in the blocks may occur out of
the order as shown in any flowchart. For example, two blocks
shown in succession may in fact be executed substantially
concurrently or the blocks may sometimes be executed in the
reverse order, depending upon the functionality/acts
involved.

While certain embodiments of the invention have been
described, other embodiments may exist. Furthermore,
although embodiments of the present invention have been
described as being associated with data stored in memory and
other storage mediums, data can also be stored on or read
from other types of computer-readable media, such as sec-
ondary storage devices, like hard disks, floppy disks, or a
CD-ROM, a carrier wave from the Internet, or other forms of
RAM or ROM. Further, the disclosed methods’ stages may be
modified in any manner, including by reordering stages and/
or inserting or deleting stages, without departing from the
invention.

All rights including copyrights in the code included herein
are vested in and the property of the Applicant. The Applicant
retains and reserves all rights in the code included herein, and
grants permission to reproduce the material only in connec-
tion with reproduction of the granted patent and for no other
purpose.

While the specification includes examples, the invention’s
scope is indicated by the following claims. Furthermore,
while the specification has been described in language spe-
cific to structural features and/or methodological acts, the
claims are not limited to the features or acts described above.
Rather, the specific features and acts described above are
disclosed as example for embodiments of the invention.

What is claimed is:

1. A method for providing inter-process messaging secu-
rity, the method comprising:

receiving a message from a first process associated with a

first set of processes governed by a first set of security
policies, the message comprising a request to perform an
operation by a destination application;

determining a destination process for the message;

determining whether the destination process is associated

with a second set of processes governed by a second set
of security policies;

in response to determining that the destination process is

associated with the second set of processes, determining
whether at least one security policy permits interaction
between the first set of processes and the second set of
processes;

in response to determining that the at least one security

policy permits interaction between the first set of pro-
cesses and the second set of processes, sending the mes-
sage to the destination process, wherein sending the
message to the destination process comprises sending

US 9,418,219 B2

11

the message via an application programming interface
between the first process and the second process;

determining whether the message requires the destination
process to send a second message to at least one other
process, wherein the at least one other process is asso-
ciated with at least one other set of processes;

in response to determining that the message requires the

destination process to send the second message to the at
least one other process, determining whether the at least
one security policy permits interaction between the sec-
ond set of processes and the at least one other set of
processes;

in response to determining that the at least one security

policy and the at least one other set of processes permits
interaction between the second set of processes and the
at least one other set of processes, determining whether
the at least one security policy permits interaction
between the first set of processes and the at least one
other set of processes; and

in response to determining that the at least one security

policy permits interaction between the first set of pro-
cesses and the at least one other set of processes, sending
the message to the at least one other process.
2. The method of claim 1, wherein receiving the message
comprising an operation request comprises receiving the
message further comprising at least one of a set data request,
a get data request, and a create user input event request.
3. The method of claim 1, further comprising:
prior to determining whether the at least one security policy
permits interaction between the first set of processes and
second set of processes, determining whether the mes-
sage is of a type which is unable to be delivered; and

in response to determining that the message is of the type
unable to be delivered, discarding the message.

4. The method of claim 3, wherein determining whether the
message is of the type which is unable to be delivered com-
prises determining whether the message comprises at least
one of a window creation message, an initialize dialog box
message, and an edit window message.

5. The method of claim 3, further comprising:

in response to determining that the message is of the type

which is unable to be delivered, sending an error mes-
sage to a source process.

6. The method of claim 1, further comprising:

in response to determining that the destination process is

not associated with the second set of processes, deter-
mining whether the destination process is associated
with the first set of processes;

in response to determining that the destination process is

associated with the first set of processes, determining
whether at least one intra-set security policy permits
sending the message; and

inresponse to determining whether the at least one intra-set

security policy permits sending the message, sending the
message.

7. The method of claim 1, wherein determining whether the
at least one security policy permits interaction between the
first set of processes and second set of processes comprises:

determining whether the at least one security policy is

associated with the first set of processes and second set
of processes; and

determining whether the at least one security policy asso-

ciated with the first set of processes and second set of
processes has been configured by at least one of an
operating system, an administrator, and a user.

8. The method of claim 1, wherein receiving the message
from the first process associated with the first set of processes

10

15

20

25

30

35

40

45

50

55

60

12

comprises receiving the message from the first process asso-
ciated with the first set of processes that is associated with a
plurality of processes.

9. The method of claim 1, wherein receiving the message
from the first process associated with the first set of processes
comprises receiving the message from the first process asso-
ciated with the first set of processes comprising at least one of
a game application, a financial application, a document pro-
cessing application, a personal information management
application, an interne access application, and an operating
system process.

10. A computer-readable storage device which stores a set
of instructions which when executed performs a method for
providing inter-process message security, the method
executed by the set of instructions comprising:

receiving a message from a first process associated with a

first set of processes governed by a first set of security
policies, the message comprising a request to perform an
operation by a destination application;

determining a destination process for the message;

determining whether the destination process is associated

with a second set of processes governed by a second set
of security policies;
in response to determining that the destination process is
associated with the second set of processes, determining
whether at least one security policy permits interaction
between the first set of processes and the second set of
processes;
in response to determining that the at least one security
policy permits interaction between the first set of pro-
cesses and the second set of processes, sending the mes-
sage to the destination process, wherein sending the
message to the destination process comprises sending
the message via an application programming interface
between the first process and the second process;

determining whether the message requires the destination
process to send a second message to at least one other
process, wherein the at least one other process is asso-
ciated with at least one other set of processes governed
by at least one other set of security policies;

in response to determining that the message requires the

destination process to send the second message to the at
least one other process, determining whether the at least
one security policy permits interaction between the sec-
ond set of processes and the at least one other set of
processes;

in response to determining that the at least one security

policy and the at least one other set of processes permits
interaction between the second set of processes and the
at least one other set of processes, determining whether
the at least one security policy permits interaction
between the first set of processes and the at least one
other set of processes; and

in response to determining that the at least one security

policy permits interaction between the first set of pro-
cesses and the at least one other set of processes, sending
the message to the at least one other process.

11. The computer-readable storage device of claim 10,
wherein the set of instructions further comprises:

determining that the at least one security policy is not

associated with the first set of processes and second set
of processes; and

in response to determining that the at least one security

policy is not associated with the first set of processes and
second set of processes, requesting authorization to
deliver the message.

US 9,418,219 B2

13

12. The computer-readable storage device of claim 10,
wherein the set of instructions further comprises returning a
value to the first process.

13. The computer-readable device of claim 10, wherein the
set of instructions further comprises:

determining whether the at least one security policy is

associated with the first set of processes and second set
of processes;

prior to determining whether the at least one security policy

is associated with the first set of processes and second set
of processes, determining whether the message is of a
type which is unable to be delivered; and

in response to determining that the message is of the type

unable to be delivered, discarding the message.

14. The computer-readable device of claim 13, wherein the
set of instructions further comprises returning an error to the
first process.

15. The computer-readable device of claim 10, wherein the
first process and the destination process are associated with a
unique set of processes governed by a set of security policies.

16. The computer-readable device of claim 10, wherein the
set of instructions further comprises:

prior to determining whether the destination process is

associated with the second set of process, determining
whether the destination process is the same as the first
process; and

sending the message to the destination process.

17. A system for providing inter-process message security,
the system comprising:

a hardware processing unit; and

a hardware memory storage coupled to the hardware pro-

cessing unit, the hardware memory storage storing
instructions that, when executed by the hardware pro-
cessing unit, cause the hardware processing unit to:

receive a message from a first process associated with a

first set of processes governed by a first set of security
policies, the message comprising a request to perform an
operation by a destination application;

determine a destination process for the message;

determine whether the destination process is associated

with a second set of processes governed by a second set
of security policies;

in response to determining that the destination process is

associated with the second set of processes, determine
whether at least one security policy permits interaction
between the first set of processes and the second set of
processes;

in response to determining that the at least one security

policy permits interaction between the first set of pro-
cesses and the second set of processes, send the message

10

15

20

25

40

45

14

to the destination process, wherein sending the message
to the destination process comprises sending the mes-
sage via an application programming interface between
the first process and the second process;

determine whether the message requires the destination

process to send a second message to at least one other
process, wherein the at least one other process is asso-
ciated with at least one other set of processes governed
by at least one other set of security policies;

in response to determining that the message requires the

destination process to send the second message to the at
least one other process, determine whether the at least
one security policy permits interaction between the sec-
ond set of processes and the at least one other set of
processes;

in response to determining that the at least one security

policy and the at least one other set of processes permits
interaction between the second set of processes and the
at least one other set of processes, determine whether the
at least one security policy permits interaction between
the first set of processes and the at least one other set of
processes; and

in response to determining that the at least one security

policy permits interaction between the first set of pro-
cesses and the atleast one other set of processes, send the
message to the at least one other process.

18. The system of claim 17, wherein the instructions fur-
ther cause the hardware processing unit to:

determine that the at least one security policy is not asso-

ciated with the first set of processes and second set of
processes; and

in response to determining that the at least one security

policy is not associated with the first set of processes and
second set of processes, request authorization to deliver
the message.

19. The system of claim 17, wherein the instructions fur-
ther cause the hardware processing unit to return a value to the
first process.

20. The system of claim 17, wherein the instructions fur-
ther cause the hardware processing unit to:

determine whether the at least one security policy is asso-

ciated with the first set of processes and second set of
processes;

prior to determining whether the at least one security policy

is associated with the first set of processes and second set
of processes, determine whether the message is of a type
which is unable to be delivered; and

in response to determining that the message is of the type

unable to be delivered, discard the message.

#* #* #* #* #*

